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We performed simulations of the solar neutron (ns) flux in the Earth’s atmosphere associated
with three significant flares (X17 of september 07, 2005, X1.3 and M3.9 of september 07,
2017). The input of the simulations was calculated on the basis of ns signals detected at
ground level by the Solar Neutron Telescope of Sierra Negra (SNT-SN), in Mexico, and by
the FIB scintillator of the Space Environment Data Acquisition-Attached Payload on board of
the International Space Station. Since ns can produce Extensive Air Showers (EAS) in the
Earth’s atmosphere, we used the CORSIKA code and FLUKA subroutines to simulate the
particle fluxes associated with the X17, X1.3 and M3.9 flares. We studied the average
longitudinal variations of particle flux and energy loss through the atmosphere to estimate
the impinging ns in the SNT-SN. The results of the particle interactions and multiplicities, as
a function of particle energy, suggested that 11-13% of the ns, released by the X17 flare, could
overcome atmospheric attenuation and propagate from the top of the atmosphere to the
STN-SN (4500 m a.s.l.) without producing EAS. On the other hand, ns associated with the
X1.3 and M3.9 flares were lost due to atmospheric attenuation and the production of new
particles; therefore, they were not detected at ground level by the SNT-SN.
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